
 



ABSTRACT 

RoboSim is a simulator developed for simulating the interaction, cooperation, and 

communication among various robots existing in a complex virtual environment. It is a 

distributed system in which the Environment acts as a controller and authorizes the movement of 

the robots based on other objects present in it. RoboSim is mainly used for simulating various 

heterogeneous real-world applications involving robots, which can be later ported to a real robot. 

Therefore, it provides a cost-effective and efficient manner of testing the feasibility of large 

applications. 

In this project, I added additional components to the existing simulator. Specifically, this report 

discusses the implementation of a set of sensor modules and a remote control module, which help 

in enhancing the capabilities of the robots. The sensor modules were used for providing the robot 

with information about the environment within which it is operating. The set of sensor modules 

implemented were a Sonar Range Finder, Laser Range Finder and Heat Sensor. These sensors 

provide near-accurate information relative to the current position of the robot within the 

environment. The Remote Control module simulates the controlling of the robot from a remote 

system using a joystick. The user controls the movements of the robot using the joystick and can 

view the robot’s characteristics and its sensor information on a GUI panel. 
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Chapter 1 Introduction 

1.1 Problem 

Simulation is the method of implementing an imitation of a complete real-world process. It is an 

indispensable problem-solving methodology for various real-world problems. A system that is 

simulated not only imitates the results of the process, but also the internal working of the system. 

Application of simulations can be seen in a variety of areas like Financial Market analysis, 

Assembly Line Balancing, Traffic Control, Search and Rescue operations using intelligent robots. 

RoboSim aims at developing a simulator for testing heterogeneous cooperative robotic 

applications that can be later used for practical implementation of real-world robots. The 

simulator creates a virtual environment for the robots to interact and communicate with other 

robots and thereby cooperatively achieve goals that are required by the user. These robots are 

simulated by application code running on them, which will later be used for programming real-

world robots like the Scout, and Pioneer models.  

The existing system that was developed by the previous team was capable of simulating the 

environment for a set of robots and allowing movement along the horizontal XY plane. Some of 

the drawbacks of the system were as follows. When the number of robots increased the simulator 

considerably slowed down. Hence the Environment module had to be remodeled for faster 

communication. In the existing environment only a limited set of sensors/ effectors were 

implemented. The robots in the environment have to be provided with additional sensors for 

better performance. The Scout interface was the only interface that was implemented for 

simulating robots. Additional robot interfaces like the Pioneer had to be implemented. With these 

aspects in mind, we started our work on the simulator. 

1.2 System Overview 

RoboSim is made up of the following components, namely: Environment, 

ControlPanelClient, GeometryClient, CommunicationSystem, Viewer, 

HardwareSimulator, RemoteControlRobot and RemoteControl. The Environment and 

ControlPanelClient function as the controller modules for the entire system. Each module 

mentioned above communicates with any of the other modules through sockets.  

The GeometryClient is responsible for maintaining a 3D geometric representation of the 

environment. It is used by the Environment to determine if the moves requested by the robots 
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are valid, i.e. no objects overlap with each other.  Apart from the 2D Sonar Range Finder 

simulated in the environment package, the GeometryClient simulates 3D Sonar Range Finder. 

The sensor values are calculated by sending a collection of rays through the environment and 

finding the collision distance of these rays with the objects. 

The ControlPanelClient acts as a user interface to control the RoboSim system. It can be 

used to load a new environment file, start or stop the simulation. It communicates with the 

Environment as shown in the component diagram in Figure 1. 

The CommunicationSystem is responsible for handling message passing between the Robots in 

the environment. Because the RoboSim is distributed and the robots having to perform 

cooperative activities, there is a lot of messaging that has to be handled. This is implemented 

using the CommunicationSystem. 

 

Figure 1. RoboSim Components 
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The Viewer is responsible for displaying either 2D or 3D view of the environment. There is no 

limitation on the number of viewers that may be connected to the environment. Moreover, any 

Viewer can connect with the Environment even after the simulator has started. 3D Viewers are 

capable of having multiple views of the environment from various viewpoints either relative to 

the Robots position or from any other point inside the environment. 

The RemoteControlRobot contains the control code for the robot to function autonomously as 

well as code that interfaces with the RemoteControl. It sends commands to the 

HardwareSimulator by translating the commands that it receives from the robot autonomous 

control code or that from the RemoteControl. The RemoteControlRobot is derived from the 

ArRobot class present in the edu.ksu.cis.cooprobot.simulator.robot.pioneer.aria 

package. This class contains the API which the RemoteControlRobot uses to send requests to 

the HardwareSimulator. 

The HardwareSimulator acts as the interface between the RemoteControlRobot and the 

Environment. It is responsible for sending the action commands and the sensor requests from 

the RemoteControlRobot to the Environment.  

The RemoteControl acts as an interface between the user and the RemoteControlRobot 

simulating a real world remote control. It receives input from the user by two methods: one, by 

listening to the input from a joystick and other, through a GUI that has buttons for controlling the 

movement of the robot and for obtaining the sensor readings of the robot. When the 

RemoteControl is started, it is given an XML file, RobotConfigFile1, as input. The file 

contains information about the robots that can be controlled using this RemoteControl. The 

RemoteControl connects to the robots specified in the file and controls only the primary robot 

specified. The other robots function based on the autonomous control code. When the user wants 

to switch to a different robot, the RemoteControl switches to the next active robot in the list of 

robots.  

The Environment is responsible for maintaining the state of all the components of the system 

including the robots. All the other modules interact through the environment. The Environment 

has a total of three servers running within it in parallel, for interfacing with the various modules 

in the simulator. The servers are as follows: the ViewerServer interfaces with the viewers, the 

                                                      

1 RobotConfigFile contains the information of the robots and the hostname of the system in which they 
are running. Verify section �Appendix A  for more details. 
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RobotServer interfaces with the HardwareSimulator of each robot, and the 

GeometryServer interfaces with the GeometryClient. An XML file 

(EnvironmentConfigFile2) containing details of the objects in the environment is given as 

input to the Environment when it is started. It loads the information from the file and performs 

the following sequence of operations to initialize the system. It starts the ViewerServer, the 

RobotServer, and the ControlPanelClient in that order. It then starts the 

GeometryServer if required, and waits for all the robots specified in the input file to get 

connected. On completion of these operations, the Environment initializes the connected 

viewers and enters the main control code. RoboSim is a time step based system, wherein the time 

step is maintained by the Environment. The following steps are done by the Environment at 

each time step. It initializes any new viewers that are connected and processes the messages 

received from the HardwareSimulator. Finally, it updates the time step and sends the new time 

step information back to the robots. 

         

Figure 2. System Overview 

                                                      

2 Check section �Appendix A for more details 
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The diagram shown in Figure 2 shows the high-level overview of the whole system. The Remote 

Control is used by the user to sends commands or requests to the Robot Control Code. The Robot 

Control Code is the control code written on the robot for either communicating with the Remote 

Control or functioning autonomously within the environment. This control code converts the 

commands in to calls to the Robot Hardware Simulator. The Hardware Simulator sends the 

requests to the Environment. The Environment module processes these requests 

1.3 Scope and Objectives 

The RoboSim system simulates the real world scenario of a group of robots aimed at achieving a 

goal. The current system has a limited set of sensors that have been implemented. For a full-scale 

simulation, the number of different types of sensors that are simulated should be increased. 

Moreover, the user should have the ability of controlling the robots from a remote system. Hence, 

this project aims at satisfying two primary goals. First is the simulation of three new sensors 

namely, SONAR Range Finder, LASER Range Finder and the HEAT Sensor. These sensors 

assist the robots in acquiring better knowledge concerning the environment and the objects 

present in it. The second goal is the creation of a RemoteControl capability that can be used to 

control robots from a remote location or system.  

1.4 Document Overview 

The document so far gives a basic overview of the entire system. In Chapter 2, a discussion about 

similar research is done. In Chapters 3 and 4, the document moves on to discuss the 

methodologies and implementation of the Sensor modules and the RemoteControl module 

respectively. The discussion then shifts to the testing of the developed modules in Chapter 5 

where the Maze application developed for testing the system is discussed in detail. 

The final chapter presents a conclusion to the report and specifies the future enhancements and 

changes that could be brought into the simulator with respect to the Sensor and Remote Control 

modules. The appendix explains the steps for starting the application and operating it. 
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Chapter 2 Literature Review 

2.1 Introduction 

In recent years, Robotic Simulators have been a particular area of interest for a number of 

researchers and developers. There have been many projects that are similar to the RoboSim 

simulator. This chapter is aimed at discussing certain projects that fall in the same category of 

RoboSim. This chapter provides a foundation for knowledge about similar research in the area of 

Robotic Simulators.  

2.2 Rossum – RP1 Simulator 

Rossum [�4] is a robotic simulator project that is currently under development by a group of three 

programmers at sourceforge.net. The Rossum’s project aims are building a client-server 

based robotic simulator, which can be used for testing code that will be running on the original 

robot. The first version of the project is named the RP1 simulator. It allows the users to create 

robot models by specifying the physical layout, wheel actuators, optical (or IR) sensors, range 

sensors, and bumper sensors. Internally, it represents the world as a 2D environment, and models 

the interactions and movements in a 2D manner. Though it has not been currently implemented, 

the ultimate aim of the geometric model will be a 3D representation. The simulator is written with 

Java as the programming language. It provides the user with a server. The server provides a world 

in which the simulated robot can move about and interact with its environment. Though the robot 

is simulated by the server, it does not implement any navigational logic. It is the work of the 

client program, which connects to the server, to provide the robot with navigational logic. The 

client program is written by the user/developer who wants to test the code they will be running on 

the actual robot. The environment provides information to the client such as bumper sensor 

readings, IR sensor readings, etc. Based on these readings and any other information, that client 

has, it issues commands, like ‘move forward’, to the simulator. One of the major advantages of 

this system is that the client connecting to the server can be written in any language suitable to the 

developer/user. Though the server is implemented in Java, it can communicate with a client 

written in C, C++, Forth, Lisp, Prolog, even Basic. However, a major constraint in the current 

release is that it can support only one client in a full-fledged manner, at any instant of time.  
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2.3 RoboCup – Soccer Simulator 

RoboCup [�6] is a robotic simulator whose main goal is to simulate a soccer match played by 

robots. The ultimate goal of the project is to develop a team of fully autonomous humanoid robots 

that can win against the human world soccer champion team.  

The main module of the system is the Soccerserver. The Soccerserver enables autonomous agents 

consisting of programs written in various languages to play a match of soccer against each other. 

A match is carried out in a client-server style. Soccerserver, provides a virtual field and simulates 

all movements of a ball and players. Each client controls the movements of one player. 

Communication between the server and each client is done via UDP/IP sockets. Therefore, users 

can use any kind of programming systems to interface with the server. 

The Soccerserver consists of two programs, Soccerserver and Soccermonitor. Soccerserver is a 

server program that simulates movements of a ball and players, communicates with clients, and 

controls the games according to rules. Soccermonitor is a program that displays the virtual field 

from the Soccerserver on the monitor using the X windows system. A number of Soccermonitor 

programs can connect with one Soccerserver, so it can display field-windows on multiple 

windows.  

A client connects with the soccer server using a UDP socket. Using the socket, the client sends 

commands to control a player of the client and receives information from sensors of the player. In 

other words, a client program is the brain of the player. The client receives visual and auditory 

sensor information from the server, and sends control-commands to the server. 

2.4 MobileSim 

MobileSim [�8] is a simulator developed by ActivMedia Robotics Corporation, manufacturers of 

the Pioneer class of robots. MobileSim simulates mobile robots and their environments, for 

debugging and experimentation with Aria based control programs and other software. It converts 

an ActivMedia map3 to a Stage environment, and places a simulated robot model in that 

environment. It then provides a simulated Pioneer control connection accessible via TCP port 

81014. Most Aria based programs will automatically connect to that TCP port if available. 

MobileSim is based on the Stage library, created by the Player/Stage project [�9].  

                                                      

3 A .map file created by Mapper3 or Mapper3-Basic 
4 Similar to real Pioneer’s serial port connection 
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The Player/Stage project [�9] consists of two modules namely the Player and the Stage. Player is a 

networked robot/sensor device interface and Stage provides a 2D simulated world. Player 

provides a clean and simple interface to the robot's sensors and actuators over the IP network. The 

client program talks to Player over a TCP socket and reads data from sensors, writes commands 

to actuators, and configures devices on the fly. Player supports a variety of robot hardware. The 

original Player platform is the ActivMedia Pioneer 2 family, but several other robots and many 

common sensors are supported.  

Stage is responsible for providing a population of robots, sensors and objects within a 2-

dimentional environment. The development of Stage is based on multiagent systems. Since the 

Stage provides a population of virtual devices to the Player, users can write robot controllers and 

sensor algorithms as client programs to the Player server. Various sensors and actuators are 

provided, including sonar, scanning laser rangefinders, vision (color blob detection), odometer, 

and a differential steer robot base. 
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Chapter 3 Sensor Module Simulation 

3.1 Introduction 

One of the primary goals of this project was aimed at simulating the various sensors present on 

the robots. These sensors are responsible for providing essential information about the 

environment, which could be used by the robots to determine the state of the environment. By 

determining the state relative to their current position in the environment, they issue the next best 

possible move towards achieving their goal. Each robot is provided with set of sensors, which 

varies based on the model of the robot. The Nomad Scout, and the ActivMedia Pioneer are the 

two robots which have been implemented in the simulator. The Nomad Scout robot can have a 

SONAR range finder and/or a HEAT sensor. The ActivMedia Pioneer has the option of having a 

SONAR range finder, LASER range finder, and/or HEAT sensor.  This chapter discusses the 

simulation of a SONAR range finder, LASER range finder and HEAT sensor for the robots. 

3.2 Sensor Modules – An Overview 

The main classes in the Sensor module are the RobotSensor, RobotSensorLaser, 

RobotSensorSonar and RobotSensorHeat. They are implemented as part of 

edu.ksu.cis.cooprobot.simulator.environment package. Any new sensor class that is 

implemented is derived from the RobotSensor class. This class comprises all the common 

characteristics that are necessary for each sensor type. The RobotSensor has an abstract method 

generateSensorResponse()that should be implemented in each sensor class that is derived 

from it. This abstract method is used for obtaining the corresponding sensor response whenever 

the robot requests it.  

 

Figure 3. Sensor Modules - High Level Class Diagram 

Figure 3 shows a high-level view of the sensors that have been implemented in this project. It 

shows that the RobotSensorLaser, RobotSensorHeat, and RobotSensorSonar classes that 
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simulate the LASER, HEAT, and SONAR sensors respectively are derived from the 

RobotSensor class. Each robot is associated with an instance of the corresponding class for 

each sensor it carries. This instance is stored in the Environment. Since the position and 

characteristics of all the objects are maintained and updated by the Environment, these classes 

are implemented as a part of the edu.ksu.cis.cooprobot.simulator.environment 

package and are invoked when the robots request for any of the sensor readings. 

 

Figure 4. Sensor Module - Sequence Diagram 

Figure 4 shows the sequence of events happening when a remote control object requests a sonar 

sensor reading. The sequence of events happening will be similar in the case of the other sensors 

too. These events are triggered when the RemoteControl or other application code requests for 

the sensor readings. The RemoteControl sends a REQ_SONAR message to the 

RemoteControlRobot. The RemoteControlRobot maintains a buffer of sensor readings and 

hence, checks if the sensor readings are relative to the current time step, waits infinitely until the 

sensor message buffer is updated by the HardwareSimulator. The  HardwareSimulator 

executes as a separate thread and periodically updates the sensor readings by sending requests to 

the RobotClientWorker. On receiving the request from the HardwareSimulator, the 

RobotClientWorker sends the set of sensor requests to the GeometryClientWorker. The 

GeometryClientWorker obtains references of the robots from the Environment. These 

references contain instances of the corresponding class for each sensor the robot contains. It calls 



 11 

the generateSensorResponse() method of the corresponding sensor class and puts the 

response into the queue of messages to be sent back to the RemoteControlRobot. The 

RobotClientWorker obtains this queue of messages and sends it to the HardwareSimulator. 

On receiving the sensor response, the doSensorUpdate() method of the 

RemoteControlRobot is invoked. This method updates the sensor readings buffer and the 

Boolean flags to indicate that the information has been updated. The RemoteControlRobot 

waiting for the sensor reading, on return of a true from the isSensorNew() method, comes out 

of the wait state and sends the requested sensor information to the RemoteControl or to the 

application code. A similar sequence of events happens when a sensor request is obtained for the 

Laser and Heat sensor readings. 

3.3 Methodology 

3.3.1 LASER Range Finder 

The laser range finder is responsible for determining the distance and coordinate information of 

an object that is in the line of sight of the direction in which the sensor is pointing and within its 

maximum range. This is done by shooting a pulse in the direction in which it is pointing. Based 

on the reflection of the laser from the face of an object, the distance of it and its coordinate 

information is calculated.  The Laser range finder is capable of rotating through an angle of 90 

degrees on either side from the direction in which the robot is facing. 

3.3.2 SONAR Range Finder 

Each type of robot has a specific setup for the SONAR range finder. The SONAR that has been 

simulated is done using the specifications of the Pioneer 3 model. The Pioneer 3 model may have 

a total of either 8 or 16 array of sonar sensors. They are placed as one or two sets, based on the 

number of sensors, thus forming the front and rear array of sonar sensors. If there are 8 sensors, 

then only the front array is present, else if there are 16, then both the rear and front arrays are 

present. These sonar sensors individually cover 20 degrees each and in turn scan a total angle of 

360 degrees around the robot. Every time a reading is requested from the SONAR sensors, a 

sonar pulse is sent from each of the SONAR, one at a time. Each sonar sensor in the array returns 

the distance of the closest object in its sector and its x, y, and z coordinates relative to the robot. 

Hence, 8 or 16 readings are sent back to the robot.  
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3.3.3 HEAT Sensor  

The Scout and the Pioneer class of robots do not have an actual heat sensor available. This sensor 

was mainly simulated in order to help in certain specific application like a search and rescue, 

wherein the victims are identified based on the heat that is emitted from them. A detailed 

description of the heat sensor is given in section �3.4.3.  

 

Figure 5. Sensor Modules - Detailed Class Diagram 
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3.4 Implementation 

3.4.1 LASER Range Finder 

The RobotSensorLaser class simulates the Laser Range Finder. The attributes of the class are 

shown in Figure 5. An instance of this class is created for each robot that has the laser sensor. The 

parameters required for initializing the sensor are the direction5, range6, id (id of the 

sensor), and xyz coordinates relative to the position of the robot are provided in the 

EnvironmentConfigFile file supplied to the environment. The response of the laser is 

calculated in the generateSensorResponse() method of the RobotSensorLaser class. The 

GeometryClientWorker passes the updated information of the environment objects packed in 

an EnvironmentMap object as a parameter to the generateSensorResponse() method. 

There are two types of objects present in the environment, namely, cubes and cylinders. The 

Laser sensor performs a 2D geometry based calculation. It uses the shapes made by the objects 

against the horizontal XY plane. Hence the cubes and cylinders are considered as circles and 

rectangles respectively. 

Initially it calculates the absolute position of the sensor based on the position of the robot and the 

xyz relative positions. In the second iteration, the method checks if the height of the object is 

greater that the position of the sensor, to check if it is hit by the laser. In the next iteration, it 

determines the point and distance of intersection of a horizontal line, drawn from the origin of the 

laser in its pointing direction, with the object. The methods intersectLineCircle() and 

intersectLineSquare() are used for calculating the intersection points with circles and 

rectangles respectively. This process is repeated for all the objects and the closest objects 

intersection point and distance is sent back to the environment. In case there are no objects within 

the range of the Laser, it returns the maximum range of the laser. The return values are packed 

in to a RobotSensorResponse class object. 

3.4.2 SONAR Range Finder 

The RobotSensorSonar class is responsible for simulating the Sonar Range Finder. The 

attributes and methods of this class can be seen in Figure 5. The sensor object is created and it 

                                                      

5 Indicates the direction in which the laser is facing relative to the robot. It is stored in the attribute rot of 
the RobotSensor class. 
6 Indicates the range within which the sensor can detect objects. It is stored in the attribute range of the 
RobotSensorLaser class. 
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parameters are loaded in a similar way as the Laser Range Finder. The parameters required for 

initializing the sonar sensor are the range7, id (id of the sensor), and mode. The mode parameter 

indicates if the robot has 8 (mode =1) or 16 (mode = 2) sensor array. The response of the SONAR 

is determined in the generateSensorResponse() method of the RobotSensorSonar class. 

Initially, the absolute position of the sonar sensors around the robot is determined. Using this 

position as the origin, two lines showing the boundary of the sonar’s area of coverage is drawn. 

Each environment object is verified against these two lines, if they lie in between them and within 

the range. The sonar makes use of the intersectLineCircle() and 

intersectLineSquare() for this purpose. This process is repeated for all the sonar sensors in 

the array. The method finally returns the distance and point of intersection of the closest object in 

each sonar sector. This information is packed in an object of the RobotSensorResponse class.  

3.4.3 HEAT Sensor  

 The RobotSensorHeat class is responsible for simulating the HEAT sensor. A detailed view of 

the class can be seen in Figure 5. The parameters for initializing the Heat sensor are the range 

and id (id of the sensor). The range specifies the distance within which it is capable of sensing 

heat. When a request for readings from the Heat sensor is requested for a robot, the control is 

passed to the generateSensorResponse() method of the RobotSensorHeat class. Here, it 

finds each environment object within the range of the sensor, checks if the object is generating 

heat, if so a value, inversely proportional to the distance of the object from the sensor and directly 

proportional to the temperature of the object, is added to the reading of the sensor. This is packed 

in an instance of the RobotSensorResponse class and sent to the robot.  

                                                      

7 Indicates the range within which the sensor can detect objects. It is stored in the attribute range of the 
RobotSensorSonar class. 
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Chapter 4 Remote Control Simulation 

4.1 Introduction 

Apart from the simulation of the sensors, the other primary goal of this project was to create a 

remote control that could be used for controlling the activities of the robot from a remote 

machine. An additional feature that was to be integrated with the remote control was controlling 

the movements of the robot using a joystick. The remote control, integrated with the joystick, 

provides a means for the user to interact with the system. It acts as an interface between the user 

and the robot, by accepting the movement instructions from the user and displaying the current 

characteristics of the robot back to the user. The remote control could also be used for controlling 

multiple robots at the same time. This chapter discusses in detail the simulation of the remote 

control module. 

4.2 Methodology 

The remote control is responsible for obtaining inputs from the user by two ways. One is by using 

a Graphical User Interface, which receives basic instructions like accelerate, decelerate, turn 

right, turn left, and acquire various sensor readings. The other is by using a joystick, which the 

user can operate in order to move the robot within the environment. In addition to receiving 

inputs from the user, the remote control should also display the various sensor readings relative to 

the current position of the robot. This can be done in a live manner, where in the information 

displayed is updated whenever the position of the robot is changed, or in a request based manner, 

where in sensor information is updated only when the user requests it. The implementation of the 

remote control is discussed in the next section.  

4.3 Implementation 

The main classes in the Remote Control Module are the RemoteControl, 

RemoteControlRobot and the RemoteControlMessage. They are implemented as a part of 

the edu.ksu.cis.cooprobot.simulator.applications.maze package. The 

RemoteControl class implements the remote control, waiting for input from the user. The 

RemoteControlRobot class simulates the robot that is controlled by the remote control. The 

RemoteControlRobot and RemoteControl use the RemoteControlMessage class for 

exchanging control and sensor information between each other. Figure 6 gives a high-level view 

of the remote control module. The functioning of the system can be explained in detail as follows. 
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For every robot controlled by the remote, the RobotConfigFile file should contain information 

regarding the IP address of the RemoteControlRobot system and the port number at which it 

will connect to the RemoteControl. This is given as input to the RemoteControl thread. The 

RemoteControl implements the abstract class JoyStickListener8. It first initializes the 

JoyStickListener and then it loads the information of all the robots and determines the 

primary robot it will be controlling, identified using the tag primary in the RobotConfigFile. 

 

Figure 6. RemoteControl Module - High Level Class Diagram 

On loading the information of all the robots, the RemoteControl initializes and starts the 

CRS3DViewer (a type of Viewer) thread. The CRS3DViewer is used for displaying 3D view of 

the environment and its objects. The view shown will be relative to the robot. It will capture the 

picture as that of a camera placed on top of the robot. This helps the user in navigating through 

the environment. Therefore, the user can move the robot around the environment and request 

sensor data even from a remote system. The effectiveness of the Viewer module was seen during 

the testing phase when navigating through the Maze. 

The RemoteControl and RemoteControlRobot use the RemoteControlMessage for 

communication between each other. The types of messages that can be used for communication 

are shown in Figure 7. They are the INIT, INIT_ACK, ACCELERATE, DECCELERATE, 

TURN_LEFT, TURN_RIGHT, REQ_HEAT, REQ_LASER, and REQ_SONAR. The type of the message 

                                                      

8 JoystickListener [�10] is a vendor API which is used for receiving input from the joystick in a similar 
way to an ActionListener in Java. 
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is indicated by the attribute messageType of the class RemoteControlMessage. The INIT 

message is sent when a connection is established. The INIT_ACK message is sent from the 

RemoteControlRobot when it receives an INIT message and from the RemoteControl when 

it wants to inform a robot to switch between executing autonomous control code and remote 

control commands. The ACCELERATE, DECCELERATE, TURN_LEFT, and TURN_RIGHT are 

messages representing movement commands sent by the RemoteControl. The REQ_HEAT, 

REQ_LASER, and REQ_SONAR are messages which represent, sensor reading request if sent from 

RemoteControl, and sensor reading replies if sent from RemoteControlRobot. 

 

Figure 7. Remote Control - Robot Protocol Diagram 

  

Figure 8 represents a detailed view of the classes of the Remote Control module. After starting 

the Viewer thread, the RemoteControl waits for all the secondary robots to connect with it. As 

soon as it connects to each secondary robot, it sends an ‘INIT’ message to it with the attribute 

autonomous set to TRUE. On receiving the message, the secondary robots start executing the 

autonomous control code9. Finally, the RemoteControl connects with the primary robot and 

                                                      

9 Autonomous control code is present in the autonomousControlCode() method of the 
RemoteControlRobot class. 
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sends an INIT message with the attribute autonomous set to FALSE. On receiving this, the 

primary RemoteControlRobot is set to execute the remote control code10. The system now 

enters the main loop, where the RemoteControl waits and receives commands from the user 

and sends it to the primary robot. The primary robot then processes the requests and action 

commands by sending it to the HardwareSimulator. 

 

Figure 8. RemoteControl Module - Detailed Class Diagram 

The user can change the primary robot controlled by the RemoteControl by clicking the 

appropriate button11 in the joystick. When the user presses this button, the RemoteControl 

sends an INIT_ACK message to the primary robot, sets it to execute the autonomous control 

code, and puts it in the tail of the list of secondary robots. It then selects the first robot in the list 

                                                      

10 Remote control code is present in the remoteControlCode() method of the RemoteControlRobot 
class. 
11 Refer to section �Appendix A for operation configuration of the application. 
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and sends an ‘INIT_ACK’ message to sets the selected robot to listen to the commands from the 

RemoteControl.  
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Chapter 5 Testing & Results 

5.1 Introduction 

The modules that were developed were successfully integrated into the RoboSim. In order to test 

the correct functioning of these modules, an application was developed which uses the 

information obtained from these modules. This chapter discusses in detail the two versions of the 

Maze application that was developed in order to test these sensor and the RemoteControl 

modules. 

5.2 Testing Sensor Module 

5.2.1 Methodology 

The Version 1 of the Maze application was used for testing the sensor modules. In this 

application, a group of robots search through a large Maze for finding gold kept at an unknown 

location. The robots move through the maze and find the gold by using their sensors and they 

communicate with each other for passing information if the gold has been detected by any of the 

robots. 

5.2.2 Implementation 

The GoldFinder class, derived from the Aria robot interface, simulates the gold finding robots. 

The main loop of the GoldFinder can be seen in Figure 9. The robot gets the readings from the 

SONAR and the HEAT sensors. The Gold class simulates the presence of gold inside the Maze. 

It generates heat at a temperature specified in the XML file.  

The HEAT sensor calculates the reading based on the temperature of objects within a specified 

range. The robot checks the temperature obtained from the HEAT sensor against a threshold 

temperature that identifies the Gold. As soon as it detects the presence of Gold, it sends a GOLD 

message to its neighboring robot. The robots transfer messages in a cyclic manner. When the 

application is started, for each robot, the robot to which it can send message is given as input. 

Hence, when a message is to be sent across, it is sent to only one robot at a timestep. If a GOLD 

message is received by any robot in the application, it sends a GOLD message with the source of 

the message and information to its neighboring robot and halts at that point. Hence, the 

application comes to a stop once any of the robots detect gold inside the Maze. In addition to the 

SONAR and the HEAT sensor, the application also made use of the LASER sensor for navigation 

inside the Maze. The readings that were obtained from the sensors at various locations in the 
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environment are displayed in Table 1. These readings were obtained for the 

EnvironmentConfigFile OpHo2_1.xml. These readings were compared against manual 

calculations and they were found to be consistent.  

 

Figure 9. Maze Version 1 - Main Loop 

 

Figure 10. Maze - Testing Sensor Module 
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Robot Position and 
Angle Sonar Readings 

No. 
X Y Z � 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Laser 
Readings 

Heat 
Readings 

1 -10 -89.5 5 90 6.5 8.3 12.4 16 16 16 16 16 16 11.1 8.3 7.5 7.5 8.3 8.3 6.5 13.6 0 

2 -30.6 -85.7 5 170 11.9 13 16 16 16 16 16 11.6 11.4 12.3 16 16 16 16 16 12.1 21 0 

3 -47.9 -82.7 5 170 8.8 9.8 13.3 16 16 16 16 14.6 14.5 16 16 16 16 16 13.3 9 21 0 

4 -81.7 -72.9 5 150 16 16 16 16 16 16 16 16 16 16 16 16 16 16 9 12.1 17.9 0 

5 -78.6 -40.6 5 70 5.1 16 16 16 16 16 16 16 16 16 16 16 16 16 10.2 5.8 21 0 

6 -62 -35.3 5 330 12.8 16 16 16 16 16 16 16 16 16 16 16 16 16 16 7.1 21 0 

7 17.4 -47.7 5 60 13.9 5.9 5.3 11.7 16 16 16 16 16 16 16 16 16 16 16 16 19.28 0 

8 4.4 0 5 100 12.4 16 16 16 6 6.9 16 16 16 16 16 16 16 16 13.3 12.2 21 5.39 

9 3.5 4.9 5 40 16 12.9 12.9 14.2 16 16 16 1.1 1.4 16 16 16 16 16 16 16 17.8 11.7 

10 -1.1 15.7 5 170 16 16 16 16 16 16 16 0.8 1.3 16 16 16 16 16 16 16 15.6 12.2 

 

Table 1. Sensor Data from application
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5.3 Testing RemoteControl Module 

5.3.1 Methodology 

The Version 2 of the Maze application was used for testing the RemoteControl module of the 

simulator. The application involves the controlling of robots by an external user by using the 

joystick. The robots are placed within a maze and the ultimate goal of the user is to move the 

robot within a suitable distance from the gold that is placed in the Maze. The first robot to reach 

the gold is termed as the winner. 

 

Figure 11. Maze - RemoteControl Module 

5.3.2 Implementation 

The RemoteControl class is responsible for receiving the joystick input from the user. It sends 

the received requests and commands to the RemoteControlRobot instance that it controls. On 

reaching within a close vicinity of gold, if the user requests to check for a win situation, the robot 

sends a request to the environment, which determines if the user has won. If so, it sends the win 

information to all the robots. On receiving this information, all robots are made to come to a halt. 

The display of the RemoteControl can be seen in the Figure 11 below. The user moves through 

the Maze by using the 3D display shown in Figure 11. The remote control was displayed at the 

‘Spring Open House 2005’ at Kansas State University. The readings obtained from the sensors 
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were checked for consistency with the graphical display shown on the GUI. At various locations 

in the maze, the sensor information obtained was found to be consistent with the readings derived 

from manual calculations. 
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Chapter 6 Conclusion 

The Sensor and RemoteControl modules were integrated with the environment and tested 

using the two versions of the Maze application. The Version 2 of the Maze application was 

displayed for user at the Open House 2005 event at Kansas State University.  

The SONAR, LASER and HEAT sensors consistently provided accurate information, which was 

used by the robot for navigation through the maze. The current system uses the 3D Sonar 

simulator, present within the GeometryServer, for sensor readings for the robot.  

The RemoteControl in the system is capable of receiving input from the user through a 

Joystick, as well as the Graphical User Interface, for controlling the movements of the robot.  

6.1 Future Enhancements 

During the course of development of the project, there were some ideas that I thought could be 

considered as future enhancements in the project. They are explained below. 

In the current system, for sending back sensor responses to the robot, for each sensor request sent 

by the robot, a sensor response packet is sent back to it. In future if all the sensor requests for a 

particular robot at each timestep could be packaged together and sent, it will minimize the 

network traffic between within the system. For this to be implemented, the 

processSensorRequests() method of the Environment and the corresponding 

doSensorUpdate() method of the HardwareSimulator should be modified appropriately. 

The three sensors that have been simulated perform the operations based on perfect geometric 

calculations. However on the real robot, the readings that are obtained from the sensors may be 

corrupted and prone to errors. An example of one such error could be noise disturbance. Since the 

simulator should behave in an exact manner as the original system, in future the sensor readings 

that are sent from the sensors should be error prone and these errors should be introduced in a 

calculated manner based on the real robot sensors.  

The current RemoteControl interface was developed with the RemoteControlRobot 

extending the ArRobot interface of the Pioneer robot class. Hence the remote control feature 

is not available for the Scout robot interface, the Scout. In future, this feature should be extended 

to the Scout robot’s interface too.  
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The code that is written on the simulator has not been tested on the actual robots. A significant 

advancement in the simulator could be to solve the porting problems that will be faced when 

using the code from the simulator on the actual robots. 
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Appendix A Users Manual 

RoboSim is a distributed system that can be run on network of systems. The simulator consists of 

a minimum of four modules that need to be started. They are the Environment, 

GeometryClient, 3D/2D Viewer, RemoteControlRobot, and RemoteControl started in 

the given order. The detailed steps for running the simulator with the RemoteControl are 

explained in this appendix. 

A.1 Starting Simulator – With RemoteControl 

The step-by-step procedure for starting the simulator is given as follows: 

1. Check out the RoboSim project from the CVS repository. The CVS is located at the server 

fingolfin.user.cis.ksu.edu12. A login is necessary to check out. 

The RoboSim\scripts\ directory contains the executable files for Windows and Linux 

based systems. They are written to load pre-defined environment configurations. Samples of 

the EnvironmentConfigFile are located in the 

RoboSim\TestLoadFiles\Environment directory (e.g. OpHo1.xml). The 

RobotConfigFile given to the RemoteControl is also located in this directory (e.g. 

RobotInfo.xml). Using these files as templates, you can create new files based on the 

applications specifications. 

The Environment is the first module that should be started. The file given as input is the 

Environment configuration file. The command is: 

start java edu.ksu.cis.cooprobot.simulator.environment.Environment  

<EnvironmentConfigFile> 

2. The next two modules to be started are the 2D/3D Viewer and the GeometryClient. They 

can be started in any order using the following commands: 

start java edu.ksu.cis.cooprobot.simulator.viewer.Viewer2D <EnvHostname>  

                                                           <EnvWaitPort = 3000> 

start java edu.ksu.cis.cooprobot.simulator.viewer.Viewer3D <EnvHostname>  

                                                           <EnvWaitPort = 3000> 

start java edu.ksu.cis.cooprobot.simulator.geometry.GeometryClient  

                                             <EnvHostname> <EnvWaitPort = 10000> 

                                                      

12 Server will be moved to macr.user.cis.ksu.edu in future 
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In the previous commands shown, the EnvHostname is the hostname or IP address of the 

system in which Environment module is running and EnvWaitPort is the port at which the 

Environment is waiting for a connection with the corresponding module. 

3. The RemoteControlRobot module is the next one to be started. It can be done using the 

following command: 

start java edu.ksu.cis.cooprobot.simulator.applications.maze.RemoteControlRobot 0  

        <EnvHostname> <EnvWaitPort = 8000> <No. of sonars> <x-pos> <y-pos> <RCPort> 

In the previous command, the EnvHostname and EnvWaitPort represent the same as 

mentioned in step 4. The next input is the size of sonar sensor array present in the robot. The 

x-pos and y-pos are the starting x and y coordinates of the robot. They can be used in 

future for any mapping applications. The RCPort is the port at which the 

RemoteControlRobot will be waiting for a socket connection from the RemoteControl. 

4. Finally the RemoteControl is started using the following command: 

start java edu.ksu.cis.cooprobot.simulator.applications.maze.RemoteControl  

                                                     <RobotConfigFile> <EnvHostname> 

In the above command, the RobotConfigFile is the configuration file containing the 

information about the robots that will be controlled by the RemoteControl. The 

EnvHostname is the hostname of the system in which the Environment is running.  

A.2 Configuration File Formats 

 

Figure 12. RobotConfigFile Format 

Figure 12 shows the general format of a RobotConfigFile given as input to the 

RemoteControl. The information that should be specified in the file are the Hostname/IP 

Address of the RemoteControlRobot system, the Port at which the RemoteControl 

connects to it, the Robot – Name and a ‘1’ to indicate this robot is primary else a ‘0’. Only one 

RemoteControlRobot specified in the file can have a ‘1’ value in the primary tag. 

<?xml version="1.0"?> 
<RobotInfo> 
 <robot> 
  <hostname><IP Address></hostname> 
  <port><RCPort></port> 
  <name><Robot Name></name> 
  <primary><1/0></primary> 
 </robot> 
 … 
</RobotInfo> 
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Figure 13. EnvironmentConfigFile Example 

Figure 13 shows an example for the EnvironmentConfigFile. This particular example contains the 

information about a robot named Gold1, facing an initial angle of 0.0radians at location (10,-90,5) 

with a radius of 3units, a height of 10 units, temperature of 0 degrees and is not stationary. It has 

a laser range finder with ID = 3, RANGE = 20, the position relative to the robot is (1.5, 0, 3). The 

<?xml version="1.0"?> 
<world> 
 <surface> 
  <type>smooth</type> 
  <size> 
   <xmin>-500</xmin> 
   <xmax>500</xmax> 
   <ymin>-500</ymin> 
   <ymax>500</ymax> 
  </size> 

<object> 
   <shape> 
    <robot> 
     <cylinder> 
      <direction>0.0</direction> 
      <name>Gold1</name> 
      <x>30.0</x> 
      <y>0.0</y> 
      <z>0.0</z> 
      <radius>10.0</radius> 
      <height>1.0</height> 
      <color>1.0 1.0 1.0</color> 
      <hot>0</hot> 
      <stationary>0</stationary> 
     </cylinder> 
     <sensor> 
      <id>1</id> 
      <type>heat</type> 
      <range>15</range> 
     </sensor> 
     <sensor> 
      <id>2</id> 
      <type>sonar</type> 
      <mode>2</mode> 
      <position> 
       <x-relative>1.5</x-relative> 
       <y-relative>0.0</y-relative> 
       <z-relative>3.0</z-relative> 
       <range>15</range> 
      </position> 
     </sensor> 
     <sensor> 
      <id>3</id> 
      <type>laser</type> 
      <position> 
       <x-relative>1.5</x-relative> 
       <y-relative>0.0</y-relative> 
       <z-relative>3.0</z-relative> 
       <dir-relative>0.0</dir-relative> 
       <range>20</range> 
      </position> 
     </sensor> 
    </robot> 
   </shape> 
  </object> 
 </surface> 
</world> 
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parameters for the stationary objects are also specified in a similar manner, but sensor section will 

not be present and the tag <robot> will be replaced by <primative> and a value of 1 for the 

<stationary> tag. 

A.3 Controlling Buttons on Joystick 

The Joystick buttons that are used for controlling the robot motions and their corresponding 

actions are: 

BUTTON 2 - Send CheckWin message to Environment 

BUTTON 3 -  Accelerate the robot 

BUTTON 4 - Decelerate the robot 

Joystick Handle moved left - Turn the robot left 

Joystick Handle moved right - Turn the robot right 
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Appendix B Programmers Manual 

This appendix discusses the information required for modifying the modules developed for this 

report. It addresses the programmer’s point of view of the system developed. 

B.1 Sensor Module 

The Sensor classes that have been implemented are a part of the 

edu.ksu.cis.cooprobot.simulator.environment package. The main logic of the sensor 

is implemented in the generateSensorResponse() method of each sensor class. The 

parameters of the sensors are loaded in the EnvironmentFileLoader class. If any new sensors 

are added to the system or the current ones are modified, these issues have to be taken into 

consideration. 

B.2 RemoteControl Module 

The RemoteControl, RemoteControlRobot, and RemoteControlMessage classes make up 

the module. They are implemented as a part of the 

edu.ksu.cis.cooprobot.simulator.applications.maze package. Any additional 

commands that are to be used to control the robot can be implemented by modifying the protocol 

existing between the RemoteControl and the RemoteControlRobot. If any new application 

are developed, which require the robot to function in either of Autonomous or RemoteControl 

mode, can be implemented by adding autonomous control code to the 

autonomousControlCode() method and the remote control code to the 

remoteControlCode() method of the RemoteControlRobot class.  


