

ABSTRACT

RoboSim is a simulator developed for simulating the interaction, cooperation, and

communication among various robots existing in a complex virtual environment. It is a

distributed system in which the Environment acts as a controller and authorizes the movement of

the robots based on other objects present in it. RoboSim is mainly used for simulating various

heterogeneous real-world applications involving robots, which can be later ported to a real robot.

Therefore, it provides a cost-effective and efficient manner of testing the feasibility of large

applications.

In this project, I added additional components to the existing simulator. Specifically, this report

discusses the implementation of a set of sensor modules and a remote control module, which help

in enhancing the capabilities of the robots. The sensor modules were used for providing the robot

with information about the environment within which it is operating. The set of sensor modules

implemented were a Sonar Range Finder, Laser Range Finder and Heat Sensor. These sensors

provide near-accurate information relative to the current position of the robot within the

environment. The Remote Control module simulates the controlling of the robot from a remote

system using a joystick. The user controls the movements of the robot using the joystick and can

view the robot’s characteristics and its sensor information on a GUI panel.

 i

TABLE OF CONTENTS

LIST OF FIGURES ..iii

LIST OF TABLES.. iv

ACKNOWLEDGEMENTS... v

Chapter 1 Introduction ... 1

1.1 Problem... 1

1.2 System Overview.. 1

1.3 Scope and Objectives.. 5

1.4 Document Overview... 5

Chapter 2 Literature Review.. 6

2.1 Introduction .. 6

2.2 Rossum – RP1 Simulator.. 6

2.3 RoboCup – Soccer Simulator ... 7

2.4 MobileSim .. 7

Chapter 3 Sensor Module Simulation .. 9

3.1 Introduction .. 9

3.2 Sensor Modules – An Overview... 9

3.3 Methodology... 11

3.3.1 LASER Range Finder... 11

3.3.2 SONAR Range Finder.. 11

3.3.3 HEAT Sensor.. 12

3.4 Implementation... 13

3.4.1 LASER Range Finder... 13

3.4.2 SONAR Range Finder.. 13

3.4.3 HEAT Sensor.. 14

Chapter 4 Remote Control Simulation... 15

4.1 Introduction .. 15

4.2 Methodology... 15

4.3 Implementation... 15

Chapter 5 Testing & Results .. 20

5.1 Introduction .. 20

5.2 Testing Sensor Module ... 20

5.2.1 Methodology... 20

5.2.2 Implementation... 20

 ii

5.3 Testing RemoteControl Module ... 23

5.3.1 Methodology... 23

5.3.2 Implementation... 23

Chapter 6 Conclusion... 25

6.1 Future Enhancements.. 25

Appendix A Users Manual... 28

A.1 Starting Simulator – With RemoteControl .. 28

A.2 Configuration File Formats.. 29

A.3 Controlling Buttons on Joystick... 31

Appendix B Programmers Manual .. 32

B.1 Sensor Module ... 32

B.2 RemoteControl Module.. 32

 iii

LIST OF FIGURES

Figure 1. RoboSim Components.. 2

Figure 2. System Overview.. 4

Figure 3. Sensor Modules - High Level Class Diagram .. 9

Figure 4. Sensor Module - Sequence Diagram .. 10

Figure 5. Sensor Modules - Detailed Class Diagram... 12

Figure 6. RemoteControl Module - High Level Class Diagram .. 16

Figure 7. Remote Control - Robot Protocol Diagram.. 17

Figure 8. RemoteControl Module - Detailed Class Diagram... 18

Figure 9. Maze Version 1 - Main Loop ... 21

Figure 10. Maze - Testing Sensor Module... 21

Figure 11. Maze - RemoteControl Module.. 23

Figure 12. RobotConfigFile Format .. 29

Figure 13. EnvironmentConfigFile Example... 30

 iv

LIST OF TABLES

Table 1. Sensor Data from application... 22

 v

ACKNOWLEDGEMENTS

I would like to thank my Major Professor, Dr. Scott A. DeLoach, for guiding me throughout this

project. I also would like to thank my other committee members, Dr. David A. Gustafson and Dr.

William J. Hankley for the time and effort they put in to help me in completing this project report.

My acknowledgements will not be complete without mentioning my project mates Thomas

Kavukat, Vikram Raman and Ryan E. Shelton. Finally, I would like to thank all my friends for

the external support they provided.

 1

Chapter 1 Introduction

1.1 Problem

Simulation is the method of implementing an imitation of a complete real-world process. It is an

indispensable problem-solving methodology for various real-world problems. A system that is

simulated not only imitates the results of the process, but also the internal working of the system.

Application of simulations can be seen in a variety of areas like Financial Market analysis,

Assembly Line Balancing, Traffic Control, Search and Rescue operations using intelligent robots.

RoboSim aims at developing a simulator for testing heterogeneous cooperative robotic

applications that can be later used for practical implementation of real-world robots. The

simulator creates a virtual environment for the robots to interact and communicate with other

robots and thereby cooperatively achieve goals that are required by the user. These robots are

simulated by application code running on them, which will later be used for programming real-

world robots like the Scout, and Pioneer models.

The existing system that was developed by the previous team was capable of simulating the

environment for a set of robots and allowing movement along the horizontal XY plane. Some of

the drawbacks of the system were as follows. When the number of robots increased the simulator

considerably slowed down. Hence the Environment module had to be remodeled for faster

communication. In the existing environment only a limited set of sensors/ effectors were

implemented. The robots in the environment have to be provided with additional sensors for

better performance. The Scout interface was the only interface that was implemented for

simulating robots. Additional robot interfaces like the Pioneer had to be implemented. With these

aspects in mind, we started our work on the simulator.

1.2 System Overview

RoboSim is made up of the following components, namely: Environment,

ControlPanelClient, GeometryClient, CommunicationSystem, Viewer,

HardwareSimulator, RemoteControlRobot and RemoteControl. The Environment and

ControlPanelClient function as the controller modules for the entire system. Each module

mentioned above communicates with any of the other modules through sockets.

The GeometryClient is responsible for maintaining a 3D geometric representation of the

environment. It is used by the Environment to determine if the moves requested by the robots

 2

are valid, i.e. no objects overlap with each other. Apart from the 2D Sonar Range Finder

simulated in the environment package, the GeometryClient simulates 3D Sonar Range Finder.

The sensor values are calculated by sending a collection of rays through the environment and

finding the collision distance of these rays with the objects.

The ControlPanelClient acts as a user interface to control the RoboSim system. It can be

used to load a new environment file, start or stop the simulation. It communicates with the

Environment as shown in the component diagram in Figure 1.

The CommunicationSystem is responsible for handling message passing between the Robots in

the environment. Because the RoboSim is distributed and the robots having to perform

cooperative activities, there is a lot of messaging that has to be handled. This is implemented

using the CommunicationSystem.

Figure 1. RoboSim Components

 3

The Viewer is responsible for displaying either 2D or 3D view of the environment. There is no

limitation on the number of viewers that may be connected to the environment. Moreover, any

Viewer can connect with the Environment even after the simulator has started. 3D Viewers are

capable of having multiple views of the environment from various viewpoints either relative to

the Robots position or from any other point inside the environment.

The RemoteControlRobot contains the control code for the robot to function autonomously as

well as code that interfaces with the RemoteControl. It sends commands to the

HardwareSimulator by translating the commands that it receives from the robot autonomous

control code or that from the RemoteControl. The RemoteControlRobot is derived from the

ArRobot class present in the edu.ksu.cis.cooprobot.simulator.robot.pioneer.aria

package. This class contains the API which the RemoteControlRobot uses to send requests to

the HardwareSimulator.

The HardwareSimulator acts as the interface between the RemoteControlRobot and the

Environment. It is responsible for sending the action commands and the sensor requests from

the RemoteControlRobot to the Environment.

The RemoteControl acts as an interface between the user and the RemoteControlRobot

simulating a real world remote control. It receives input from the user by two methods: one, by

listening to the input from a joystick and other, through a GUI that has buttons for controlling the

movement of the robot and for obtaining the sensor readings of the robot. When the

RemoteControl is started, it is given an XML file, RobotConfigFile1, as input. The file

contains information about the robots that can be controlled using this RemoteControl. The

RemoteControl connects to the robots specified in the file and controls only the primary robot

specified. The other robots function based on the autonomous control code. When the user wants

to switch to a different robot, the RemoteControl switches to the next active robot in the list of

robots.

The Environment is responsible for maintaining the state of all the components of the system

including the robots. All the other modules interact through the environment. The Environment

has a total of three servers running within it in parallel, for interfacing with the various modules

in the simulator. The servers are as follows: the ViewerServer interfaces with the viewers, the

1 RobotConfigFile contains the information of the robots and the hostname of the system in which they
are running. Verify section �Appendix A for more details.

 4

RobotServer interfaces with the HardwareSimulator of each robot, and the

GeometryServer interfaces with the GeometryClient. An XML file

(EnvironmentConfigFile2) containing details of the objects in the environment is given as

input to the Environment when it is started. It loads the information from the file and performs

the following sequence of operations to initialize the system. It starts the ViewerServer, the

RobotServer, and the ControlPanelClient in that order. It then starts the

GeometryServer if required, and waits for all the robots specified in the input file to get

connected. On completion of these operations, the Environment initializes the connected

viewers and enters the main control code. RoboSim is a time step based system, wherein the time

step is maintained by the Environment. The following steps are done by the Environment at

each time step. It initializes any new viewers that are connected and processes the messages

received from the HardwareSimulator. Finally, it updates the time step and sends the new time

step information back to the robots.

Figure 2. System Overview

2 Check section �Appendix A for more details

 5

The diagram shown in Figure 2 shows the high-level overview of the whole system. The Remote

Control is used by the user to sends commands or requests to the Robot Control Code. The Robot

Control Code is the control code written on the robot for either communicating with the Remote

Control or functioning autonomously within the environment. This control code converts the

commands in to calls to the Robot Hardware Simulator. The Hardware Simulator sends the

requests to the Environment. The Environment module processes these requests

1.3 Scope and Objectives

The RoboSim system simulates the real world scenario of a group of robots aimed at achieving a

goal. The current system has a limited set of sensors that have been implemented. For a full-scale

simulation, the number of different types of sensors that are simulated should be increased.

Moreover, the user should have the ability of controlling the robots from a remote system. Hence,

this project aims at satisfying two primary goals. First is the simulation of three new sensors

namely, SONAR Range Finder, LASER Range Finder and the HEAT Sensor. These sensors

assist the robots in acquiring better knowledge concerning the environment and the objects

present in it. The second goal is the creation of a RemoteControl capability that can be used to

control robots from a remote location or system.

1.4 Document Overview

The document so far gives a basic overview of the entire system. In Chapter 2, a discussion about

similar research is done. In Chapters 3 and 4, the document moves on to discuss the

methodologies and implementation of the Sensor modules and the RemoteControl module

respectively. The discussion then shifts to the testing of the developed modules in Chapter 5

where the Maze application developed for testing the system is discussed in detail.

The final chapter presents a conclusion to the report and specifies the future enhancements and

changes that could be brought into the simulator with respect to the Sensor and Remote Control

modules. The appendix explains the steps for starting the application and operating it.

 6

Chapter 2 Literature Review

2.1 Introduction

In recent years, Robotic Simulators have been a particular area of interest for a number of

researchers and developers. There have been many projects that are similar to the RoboSim

simulator. This chapter is aimed at discussing certain projects that fall in the same category of

RoboSim. This chapter provides a foundation for knowledge about similar research in the area of

Robotic Simulators.

2.2 Rossum – RP1 Simulator

Rossum [�4] is a robotic simulator project that is currently under development by a group of three

programmers at sourceforge.net. The Rossum’s project aims are building a client-server

based robotic simulator, which can be used for testing code that will be running on the original

robot. The first version of the project is named the RP1 simulator. It allows the users to create

robot models by specifying the physical layout, wheel actuators, optical (or IR) sensors, range

sensors, and bumper sensors. Internally, it represents the world as a 2D environment, and models

the interactions and movements in a 2D manner. Though it has not been currently implemented,

the ultimate aim of the geometric model will be a 3D representation. The simulator is written with

Java as the programming language. It provides the user with a server. The server provides a world

in which the simulated robot can move about and interact with its environment. Though the robot

is simulated by the server, it does not implement any navigational logic. It is the work of the

client program, which connects to the server, to provide the robot with navigational logic. The

client program is written by the user/developer who wants to test the code they will be running on

the actual robot. The environment provides information to the client such as bumper sensor

readings, IR sensor readings, etc. Based on these readings and any other information, that client

has, it issues commands, like ‘move forward’, to the simulator. One of the major advantages of

this system is that the client connecting to the server can be written in any language suitable to the

developer/user. Though the server is implemented in Java, it can communicate with a client

written in C, C++, Forth, Lisp, Prolog, even Basic. However, a major constraint in the current

release is that it can support only one client in a full-fledged manner, at any instant of time.

 7

2.3 RoboCup – Soccer Simulator

RoboCup [�6] is a robotic simulator whose main goal is to simulate a soccer match played by

robots. The ultimate goal of the project is to develop a team of fully autonomous humanoid robots

that can win against the human world soccer champion team.

The main module of the system is the Soccerserver. The Soccerserver enables autonomous agents

consisting of programs written in various languages to play a match of soccer against each other.

A match is carried out in a client-server style. Soccerserver, provides a virtual field and simulates

all movements of a ball and players. Each client controls the movements of one player.

Communication between the server and each client is done via UDP/IP sockets. Therefore, users

can use any kind of programming systems to interface with the server.

The Soccerserver consists of two programs, Soccerserver and Soccermonitor. Soccerserver is a

server program that simulates movements of a ball and players, communicates with clients, and

controls the games according to rules. Soccermonitor is a program that displays the virtual field

from the Soccerserver on the monitor using the X windows system. A number of Soccermonitor

programs can connect with one Soccerserver, so it can display field-windows on multiple

windows.

A client connects with the soccer server using a UDP socket. Using the socket, the client sends

commands to control a player of the client and receives information from sensors of the player. In

other words, a client program is the brain of the player. The client receives visual and auditory

sensor information from the server, and sends control-commands to the server.

2.4 MobileSim

MobileSim [�8] is a simulator developed by ActivMedia Robotics Corporation, manufacturers of

the Pioneer class of robots. MobileSim simulates mobile robots and their environments, for

debugging and experimentation with Aria based control programs and other software. It converts

an ActivMedia map3 to a Stage environment, and places a simulated robot model in that

environment. It then provides a simulated Pioneer control connection accessible via TCP port

81014. Most Aria based programs will automatically connect to that TCP port if available.

MobileSim is based on the Stage library, created by the Player/Stage project [�9].

3 A .map file created by Mapper3 or Mapper3-Basic
4 Similar to real Pioneer’s serial port connection

 8

The Player/Stage project [�9] consists of two modules namely the Player and the Stage. Player is a

networked robot/sensor device interface and Stage provides a 2D simulated world. Player

provides a clean and simple interface to the robot's sensors and actuators over the IP network. The

client program talks to Player over a TCP socket and reads data from sensors, writes commands

to actuators, and configures devices on the fly. Player supports a variety of robot hardware. The

original Player platform is the ActivMedia Pioneer 2 family, but several other robots and many

common sensors are supported.

Stage is responsible for providing a population of robots, sensors and objects within a 2-

dimentional environment. The development of Stage is based on multiagent systems. Since the

Stage provides a population of virtual devices to the Player, users can write robot controllers and

sensor algorithms as client programs to the Player server. Various sensors and actuators are

provided, including sonar, scanning laser rangefinders, vision (color blob detection), odometer,

and a differential steer robot base.

 9

Chapter 3 Sensor Module Simulation

3.1 Introduction

One of the primary goals of this project was aimed at simulating the various sensors present on

the robots. These sensors are responsible for providing essential information about the

environment, which could be used by the robots to determine the state of the environment. By

determining the state relative to their current position in the environment, they issue the next best

possible move towards achieving their goal. Each robot is provided with set of sensors, which

varies based on the model of the robot. The Nomad Scout, and the ActivMedia Pioneer are the

two robots which have been implemented in the simulator. The Nomad Scout robot can have a

SONAR range finder and/or a HEAT sensor. The ActivMedia Pioneer has the option of having a

SONAR range finder, LASER range finder, and/or HEAT sensor. This chapter discusses the

simulation of a SONAR range finder, LASER range finder and HEAT sensor for the robots.

3.2 Sensor Modules – An Overview

The main classes in the Sensor module are the RobotSensor, RobotSensorLaser,

RobotSensorSonar and RobotSensorHeat. They are implemented as part of

edu.ksu.cis.cooprobot.simulator.environment package. Any new sensor class that is

implemented is derived from the RobotSensor class. This class comprises all the common

characteristics that are necessary for each sensor type. The RobotSensor has an abstract method

generateSensorResponse()that should be implemented in each sensor class that is derived

from it. This abstract method is used for obtaining the corresponding sensor response whenever

the robot requests it.

Figure 3. Sensor Modules - High Level Class Diagram

Figure 3 shows a high-level view of the sensors that have been implemented in this project. It

shows that the RobotSensorLaser, RobotSensorHeat, and RobotSensorSonar classes that

 10

simulate the LASER, HEAT, and SONAR sensors respectively are derived from the

RobotSensor class. Each robot is associated with an instance of the corresponding class for

each sensor it carries. This instance is stored in the Environment. Since the position and

characteristics of all the objects are maintained and updated by the Environment, these classes

are implemented as a part of the edu.ksu.cis.cooprobot.simulator.environment

package and are invoked when the robots request for any of the sensor readings.

Figure 4. Sensor Module - Sequence Diagram

Figure 4 shows the sequence of events happening when a remote control object requests a sonar

sensor reading. The sequence of events happening will be similar in the case of the other sensors

too. These events are triggered when the RemoteControl or other application code requests for

the sensor readings. The RemoteControl sends a REQ_SONAR message to the

RemoteControlRobot. The RemoteControlRobot maintains a buffer of sensor readings and

hence, checks if the sensor readings are relative to the current time step, waits infinitely until the

sensor message buffer is updated by the HardwareSimulator. The HardwareSimulator

executes as a separate thread and periodically updates the sensor readings by sending requests to

the RobotClientWorker. On receiving the request from the HardwareSimulator, the

RobotClientWorker sends the set of sensor requests to the GeometryClientWorker. The

GeometryClientWorker obtains references of the robots from the Environment. These

references contain instances of the corresponding class for each sensor the robot contains. It calls

 11

the generateSensorResponse() method of the corresponding sensor class and puts the

response into the queue of messages to be sent back to the RemoteControlRobot. The

RobotClientWorker obtains this queue of messages and sends it to the HardwareSimulator.

On receiving the sensor response, the doSensorUpdate() method of the

RemoteControlRobot is invoked. This method updates the sensor readings buffer and the

Boolean flags to indicate that the information has been updated. The RemoteControlRobot

waiting for the sensor reading, on return of a true from the isSensorNew() method, comes out

of the wait state and sends the requested sensor information to the RemoteControl or to the

application code. A similar sequence of events happens when a sensor request is obtained for the

Laser and Heat sensor readings.

3.3 Methodology

3.3.1 LASER Range Finder

The laser range finder is responsible for determining the distance and coordinate information of

an object that is in the line of sight of the direction in which the sensor is pointing and within its

maximum range. This is done by shooting a pulse in the direction in which it is pointing. Based

on the reflection of the laser from the face of an object, the distance of it and its coordinate

information is calculated. The Laser range finder is capable of rotating through an angle of 90

degrees on either side from the direction in which the robot is facing.

3.3.2 SONAR Range Finder

Each type of robot has a specific setup for the SONAR range finder. The SONAR that has been

simulated is done using the specifications of the Pioneer 3 model. The Pioneer 3 model may have

a total of either 8 or 16 array of sonar sensors. They are placed as one or two sets, based on the

number of sensors, thus forming the front and rear array of sonar sensors. If there are 8 sensors,

then only the front array is present, else if there are 16, then both the rear and front arrays are

present. These sonar sensors individually cover 20 degrees each and in turn scan a total angle of

360 degrees around the robot. Every time a reading is requested from the SONAR sensors, a

sonar pulse is sent from each of the SONAR, one at a time. Each sonar sensor in the array returns

the distance of the closest object in its sector and its x, y, and z coordinates relative to the robot.

Hence, 8 or 16 readings are sent back to the robot.

 12

3.3.3 HEAT Sensor

The Scout and the Pioneer class of robots do not have an actual heat sensor available. This sensor

was mainly simulated in order to help in certain specific application like a search and rescue,

wherein the victims are identified based on the heat that is emitted from them. A detailed

description of the heat sensor is given in section �3.4.3.

Figure 5. Sensor Modules - Detailed Class Diagram

 13

3.4 Implementation

3.4.1 LASER Range Finder

The RobotSensorLaser class simulates the Laser Range Finder. The attributes of the class are

shown in Figure 5. An instance of this class is created for each robot that has the laser sensor. The

parameters required for initializing the sensor are the direction5, range6, id (id of the

sensor), and xyz coordinates relative to the position of the robot are provided in the

EnvironmentConfigFile file supplied to the environment. The response of the laser is

calculated in the generateSensorResponse() method of the RobotSensorLaser class. The

GeometryClientWorker passes the updated information of the environment objects packed in

an EnvironmentMap object as a parameter to the generateSensorResponse() method.

There are two types of objects present in the environment, namely, cubes and cylinders. The

Laser sensor performs a 2D geometry based calculation. It uses the shapes made by the objects

against the horizontal XY plane. Hence the cubes and cylinders are considered as circles and

rectangles respectively.

Initially it calculates the absolute position of the sensor based on the position of the robot and the

xyz relative positions. In the second iteration, the method checks if the height of the object is

greater that the position of the sensor, to check if it is hit by the laser. In the next iteration, it

determines the point and distance of intersection of a horizontal line, drawn from the origin of the

laser in its pointing direction, with the object. The methods intersectLineCircle() and

intersectLineSquare() are used for calculating the intersection points with circles and

rectangles respectively. This process is repeated for all the objects and the closest objects

intersection point and distance is sent back to the environment. In case there are no objects within

the range of the Laser, it returns the maximum range of the laser. The return values are packed

in to a RobotSensorResponse class object.

3.4.2 SONAR Range Finder

The RobotSensorSonar class is responsible for simulating the Sonar Range Finder. The

attributes and methods of this class can be seen in Figure 5. The sensor object is created and it

5 Indicates the direction in which the laser is facing relative to the robot. It is stored in the attribute rot of
the RobotSensor class.
6 Indicates the range within which the sensor can detect objects. It is stored in the attribute range of the
RobotSensorLaser class.

 14

parameters are loaded in a similar way as the Laser Range Finder. The parameters required for

initializing the sonar sensor are the range7, id (id of the sensor), and mode. The mode parameter

indicates if the robot has 8 (mode =1) or 16 (mode = 2) sensor array. The response of the SONAR

is determined in the generateSensorResponse() method of the RobotSensorSonar class.

Initially, the absolute position of the sonar sensors around the robot is determined. Using this

position as the origin, two lines showing the boundary of the sonar’s area of coverage is drawn.

Each environment object is verified against these two lines, if they lie in between them and within

the range. The sonar makes use of the intersectLineCircle() and

intersectLineSquare() for this purpose. This process is repeated for all the sonar sensors in

the array. The method finally returns the distance and point of intersection of the closest object in

each sonar sector. This information is packed in an object of the RobotSensorResponse class.

3.4.3 HEAT Sensor

 The RobotSensorHeat class is responsible for simulating the HEAT sensor. A detailed view of

the class can be seen in Figure 5. The parameters for initializing the Heat sensor are the range

and id (id of the sensor). The range specifies the distance within which it is capable of sensing

heat. When a request for readings from the Heat sensor is requested for a robot, the control is

passed to the generateSensorResponse() method of the RobotSensorHeat class. Here, it

finds each environment object within the range of the sensor, checks if the object is generating

heat, if so a value, inversely proportional to the distance of the object from the sensor and directly

proportional to the temperature of the object, is added to the reading of the sensor. This is packed

in an instance of the RobotSensorResponse class and sent to the robot.

7 Indicates the range within which the sensor can detect objects. It is stored in the attribute range of the
RobotSensorSonar class.

 15

Chapter 4 Remote Control Simulation

4.1 Introduction

Apart from the simulation of the sensors, the other primary goal of this project was to create a

remote control that could be used for controlling the activities of the robot from a remote

machine. An additional feature that was to be integrated with the remote control was controlling

the movements of the robot using a joystick. The remote control, integrated with the joystick,

provides a means for the user to interact with the system. It acts as an interface between the user

and the robot, by accepting the movement instructions from the user and displaying the current

characteristics of the robot back to the user. The remote control could also be used for controlling

multiple robots at the same time. This chapter discusses in detail the simulation of the remote

control module.

4.2 Methodology

The remote control is responsible for obtaining inputs from the user by two ways. One is by using

a Graphical User Interface, which receives basic instructions like accelerate, decelerate, turn

right, turn left, and acquire various sensor readings. The other is by using a joystick, which the

user can operate in order to move the robot within the environment. In addition to receiving

inputs from the user, the remote control should also display the various sensor readings relative to

the current position of the robot. This can be done in a live manner, where in the information

displayed is updated whenever the position of the robot is changed, or in a request based manner,

where in sensor information is updated only when the user requests it. The implementation of the

remote control is discussed in the next section.

4.3 Implementation

The main classes in the Remote Control Module are the RemoteControl,

RemoteControlRobot and the RemoteControlMessage. They are implemented as a part of

the edu.ksu.cis.cooprobot.simulator.applications.maze package. The

RemoteControl class implements the remote control, waiting for input from the user. The

RemoteControlRobot class simulates the robot that is controlled by the remote control. The

RemoteControlRobot and RemoteControl use the RemoteControlMessage class for

exchanging control and sensor information between each other. Figure 6 gives a high-level view

of the remote control module. The functioning of the system can be explained in detail as follows.

 16

For every robot controlled by the remote, the RobotConfigFile file should contain information

regarding the IP address of the RemoteControlRobot system and the port number at which it

will connect to the RemoteControl. This is given as input to the RemoteControl thread. The

RemoteControl implements the abstract class JoyStickListener8. It first initializes the

JoyStickListener and then it loads the information of all the robots and determines the

primary robot it will be controlling, identified using the tag primary in the RobotConfigFile.

Figure 6. RemoteControl Module - High Level Class Diagram

On loading the information of all the robots, the RemoteControl initializes and starts the

CRS3DViewer (a type of Viewer) thread. The CRS3DViewer is used for displaying 3D view of

the environment and its objects. The view shown will be relative to the robot. It will capture the

picture as that of a camera placed on top of the robot. This helps the user in navigating through

the environment. Therefore, the user can move the robot around the environment and request

sensor data even from a remote system. The effectiveness of the Viewer module was seen during

the testing phase when navigating through the Maze.

The RemoteControl and RemoteControlRobot use the RemoteControlMessage for

communication between each other. The types of messages that can be used for communication

are shown in Figure 7. They are the INIT, INIT_ACK, ACCELERATE, DECCELERATE,

TURN_LEFT, TURN_RIGHT, REQ_HEAT, REQ_LASER, and REQ_SONAR. The type of the message

8 JoystickListener [�10] is a vendor API which is used for receiving input from the joystick in a similar
way to an ActionListener in Java.

 17

is indicated by the attribute messageType of the class RemoteControlMessage. The INIT

message is sent when a connection is established. The INIT_ACK message is sent from the

RemoteControlRobot when it receives an INIT message and from the RemoteControl when

it wants to inform a robot to switch between executing autonomous control code and remote

control commands. The ACCELERATE, DECCELERATE, TURN_LEFT, and TURN_RIGHT are

messages representing movement commands sent by the RemoteControl. The REQ_HEAT,

REQ_LASER, and REQ_SONAR are messages which represent, sensor reading request if sent from

RemoteControl, and sensor reading replies if sent from RemoteControlRobot.

Figure 7. Remote Control - Robot Protocol Diagram

Figure 8 represents a detailed view of the classes of the Remote Control module. After starting

the Viewer thread, the RemoteControl waits for all the secondary robots to connect with it. As

soon as it connects to each secondary robot, it sends an ‘INIT’ message to it with the attribute

autonomous set to TRUE. On receiving the message, the secondary robots start executing the

autonomous control code9. Finally, the RemoteControl connects with the primary robot and

9 Autonomous control code is present in the autonomousControlCode() method of the
RemoteControlRobot class.

 18

sends an INIT message with the attribute autonomous set to FALSE. On receiving this, the

primary RemoteControlRobot is set to execute the remote control code10. The system now

enters the main loop, where the RemoteControl waits and receives commands from the user

and sends it to the primary robot. The primary robot then processes the requests and action

commands by sending it to the HardwareSimulator.

Figure 8. RemoteControl Module - Detailed Class Diagram

The user can change the primary robot controlled by the RemoteControl by clicking the

appropriate button11 in the joystick. When the user presses this button, the RemoteControl

sends an INIT_ACK message to the primary robot, sets it to execute the autonomous control

code, and puts it in the tail of the list of secondary robots. It then selects the first robot in the list

10 Remote control code is present in the remoteControlCode() method of the RemoteControlRobot
class.
11 Refer to section �Appendix A for operation configuration of the application.

 19

and sends an ‘INIT_ACK’ message to sets the selected robot to listen to the commands from the

RemoteControl.

 20

Chapter 5 Testing & Results

5.1 Introduction

The modules that were developed were successfully integrated into the RoboSim. In order to test

the correct functioning of these modules, an application was developed which uses the

information obtained from these modules. This chapter discusses in detail the two versions of the

Maze application that was developed in order to test these sensor and the RemoteControl

modules.

5.2 Testing Sensor Module

5.2.1 Methodology

The Version 1 of the Maze application was used for testing the sensor modules. In this

application, a group of robots search through a large Maze for finding gold kept at an unknown

location. The robots move through the maze and find the gold by using their sensors and they

communicate with each other for passing information if the gold has been detected by any of the

robots.

5.2.2 Implementation

The GoldFinder class, derived from the Aria robot interface, simulates the gold finding robots.

The main loop of the GoldFinder can be seen in Figure 9. The robot gets the readings from the

SONAR and the HEAT sensors. The Gold class simulates the presence of gold inside the Maze.

It generates heat at a temperature specified in the XML file.

The HEAT sensor calculates the reading based on the temperature of objects within a specified

range. The robot checks the temperature obtained from the HEAT sensor against a threshold

temperature that identifies the Gold. As soon as it detects the presence of Gold, it sends a GOLD

message to its neighboring robot. The robots transfer messages in a cyclic manner. When the

application is started, for each robot, the robot to which it can send message is given as input.

Hence, when a message is to be sent across, it is sent to only one robot at a timestep. If a GOLD

message is received by any robot in the application, it sends a GOLD message with the source of

the message and information to its neighboring robot and halts at that point. Hence, the

application comes to a stop once any of the robots detect gold inside the Maze. In addition to the

SONAR and the HEAT sensor, the application also made use of the LASER sensor for navigation

inside the Maze. The readings that were obtained from the sensors at various locations in the

 21

environment are displayed in Table 1. These readings were obtained for the

EnvironmentConfigFile OpHo2_1.xml. These readings were compared against manual

calculations and they were found to be consistent.

Figure 9. Maze Version 1 - Main Loop

Figure 10. Maze - Testing Sensor Module

 22

Robot Position and
Angle Sonar Readings

No.
X Y Z � 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Laser
Readings

Heat
Readings

1 -10 -89.5 5 90 6.5 8.3 12.4 16 16 16 16 16 16 11.1 8.3 7.5 7.5 8.3 8.3 6.5 13.6 0

2 -30.6 -85.7 5 170 11.9 13 16 16 16 16 16 11.6 11.4 12.3 16 16 16 16 16 12.1 21 0

3 -47.9 -82.7 5 170 8.8 9.8 13.3 16 16 16 16 14.6 14.5 16 16 16 16 16 13.3 9 21 0

4 -81.7 -72.9 5 150 16 16 16 16 16 16 16 16 16 16 16 16 16 16 9 12.1 17.9 0

5 -78.6 -40.6 5 70 5.1 16 16 16 16 16 16 16 16 16 16 16 16 16 10.2 5.8 21 0

6 -62 -35.3 5 330 12.8 16 16 16 16 16 16 16 16 16 16 16 16 16 16 7.1 21 0

7 17.4 -47.7 5 60 13.9 5.9 5.3 11.7 16 16 16 16 16 16 16 16 16 16 16 16 19.28 0

8 4.4 0 5 100 12.4 16 16 16 6 6.9 16 16 16 16 16 16 16 16 13.3 12.2 21 5.39

9 3.5 4.9 5 40 16 12.9 12.9 14.2 16 16 16 1.1 1.4 16 16 16 16 16 16 16 17.8 11.7

10 -1.1 15.7 5 170 16 16 16 16 16 16 16 0.8 1.3 16 16 16 16 16 16 16 15.6 12.2

Table 1. Sensor Data from application

 23

5.3 Testing RemoteControl Module

5.3.1 Methodology

The Version 2 of the Maze application was used for testing the RemoteControl module of the

simulator. The application involves the controlling of robots by an external user by using the

joystick. The robots are placed within a maze and the ultimate goal of the user is to move the

robot within a suitable distance from the gold that is placed in the Maze. The first robot to reach

the gold is termed as the winner.

Figure 11. Maze - RemoteControl Module

5.3.2 Implementation

The RemoteControl class is responsible for receiving the joystick input from the user. It sends

the received requests and commands to the RemoteControlRobot instance that it controls. On

reaching within a close vicinity of gold, if the user requests to check for a win situation, the robot

sends a request to the environment, which determines if the user has won. If so, it sends the win

information to all the robots. On receiving this information, all robots are made to come to a halt.

The display of the RemoteControl can be seen in the Figure 11 below. The user moves through

the Maze by using the 3D display shown in Figure 11. The remote control was displayed at the

‘Spring Open House 2005’ at Kansas State University. The readings obtained from the sensors

 24

were checked for consistency with the graphical display shown on the GUI. At various locations

in the maze, the sensor information obtained was found to be consistent with the readings derived

from manual calculations.

 25

Chapter 6 Conclusion

The Sensor and RemoteControl modules were integrated with the environment and tested

using the two versions of the Maze application. The Version 2 of the Maze application was

displayed for user at the Open House 2005 event at Kansas State University.

The SONAR, LASER and HEAT sensors consistently provided accurate information, which was

used by the robot for navigation through the maze. The current system uses the 3D Sonar

simulator, present within the GeometryServer, for sensor readings for the robot.

The RemoteControl in the system is capable of receiving input from the user through a

Joystick, as well as the Graphical User Interface, for controlling the movements of the robot.

6.1 Future Enhancements

During the course of development of the project, there were some ideas that I thought could be

considered as future enhancements in the project. They are explained below.

In the current system, for sending back sensor responses to the robot, for each sensor request sent

by the robot, a sensor response packet is sent back to it. In future if all the sensor requests for a

particular robot at each timestep could be packaged together and sent, it will minimize the

network traffic between within the system. For this to be implemented, the

processSensorRequests() method of the Environment and the corresponding

doSensorUpdate() method of the HardwareSimulator should be modified appropriately.

The three sensors that have been simulated perform the operations based on perfect geometric

calculations. However on the real robot, the readings that are obtained from the sensors may be

corrupted and prone to errors. An example of one such error could be noise disturbance. Since the

simulator should behave in an exact manner as the original system, in future the sensor readings

that are sent from the sensors should be error prone and these errors should be introduced in a

calculated manner based on the real robot sensors.

The current RemoteControl interface was developed with the RemoteControlRobot

extending the ArRobot interface of the Pioneer robot class. Hence the remote control feature

is not available for the Scout robot interface, the Scout. In future, this feature should be extended

to the Scout robot’s interface too.

 26

The code that is written on the simulator has not been tested on the actual robots. A significant

advancement in the simulator could be to solve the porting problems that will be faced when

using the code from the simulator on the actual robots.

 27

REFERENCES

1. S.A. DeLoach, “Cooperative Robotic Simulator”, May 2005,
http://www.cis.ksu.edu/~sdeloach/ai/projects/crsim.htm

2. S. Harmon, “Cooperative Robotic Simulator – Environment Simulator”, tech. report,
Multiagent & Cooperative Robotic Laboratory, KSU, May 2004.

3. S. Harmon, “Cooperative Robotic Simulator”, June 2005,
http://robosim.user.cis.ksu.edu/tiki-index.php

4. G. W. Lucas, “The AutoPilot Demo”, March 2005, http://rossum.sourceforge.net/.

5. G. W. Lucas, “Rossum’s Playhouse User’s Guide for Version 0.60”, January 2005, Sonalysts
Inc.

6. O. Obst, “The RoboCup Soccer Simulator”, Nov 2003, http://sserver.sourceforge.net/.

7. M. Chen, E. Foroughi, F. Heintz, et. al, “Users Manual - RoboCup Soccer Server”, Aug 2002.

8. ActivMedia Robotics, “MobileSim”, April 2005, http://robots.activmedia.com/.

9. R. Vaughan, B. Gerkey, A. Howard, “The Player/Stage Project”, May 2005,
http://playerstage.sourceforge.net.

10. George Rhoten, “JavaJoystick”, June 2005, http://javajoystick.sourceforge.net/

 28

Appendix A Users Manual

RoboSim is a distributed system that can be run on network of systems. The simulator consists of

a minimum of four modules that need to be started. They are the Environment,

GeometryClient, 3D/2D Viewer, RemoteControlRobot, and RemoteControl started in

the given order. The detailed steps for running the simulator with the RemoteControl are

explained in this appendix.

A.1 Starting Simulator – With RemoteControl

The step-by-step procedure for starting the simulator is given as follows:

1. Check out the RoboSim project from the CVS repository. The CVS is located at the server

fingolfin.user.cis.ksu.edu12. A login is necessary to check out.

The RoboSim\scripts\ directory contains the executable files for Windows and Linux

based systems. They are written to load pre-defined environment configurations. Samples of

the EnvironmentConfigFile are located in the

RoboSim\TestLoadFiles\Environment directory (e.g. OpHo1.xml). The

RobotConfigFile given to the RemoteControl is also located in this directory (e.g.

RobotInfo.xml). Using these files as templates, you can create new files based on the

applications specifications.

The Environment is the first module that should be started. The file given as input is the

Environment configuration file. The command is:

start java edu.ksu.cis.cooprobot.simulator.environment.Environment

<EnvironmentConfigFile>

2. The next two modules to be started are the 2D/3D Viewer and the GeometryClient. They

can be started in any order using the following commands:

start java edu.ksu.cis.cooprobot.simulator.viewer.Viewer2D <EnvHostname>

 <EnvWaitPort = 3000>

start java edu.ksu.cis.cooprobot.simulator.viewer.Viewer3D <EnvHostname>

 <EnvWaitPort = 3000>

start java edu.ksu.cis.cooprobot.simulator.geometry.GeometryClient

 <EnvHostname> <EnvWaitPort = 10000>

12 Server will be moved to macr.user.cis.ksu.edu in future

 29

In the previous commands shown, the EnvHostname is the hostname or IP address of the

system in which Environment module is running and EnvWaitPort is the port at which the

Environment is waiting for a connection with the corresponding module.

3. The RemoteControlRobot module is the next one to be started. It can be done using the

following command:

start java edu.ksu.cis.cooprobot.simulator.applications.maze.RemoteControlRobot 0

 <EnvHostname> <EnvWaitPort = 8000> <No. of sonars> <x-pos> <y-pos> <RCPort>

In the previous command, the EnvHostname and EnvWaitPort represent the same as

mentioned in step 4. The next input is the size of sonar sensor array present in the robot. The

x-pos and y-pos are the starting x and y coordinates of the robot. They can be used in

future for any mapping applications. The RCPort is the port at which the

RemoteControlRobot will be waiting for a socket connection from the RemoteControl.

4. Finally the RemoteControl is started using the following command:

start java edu.ksu.cis.cooprobot.simulator.applications.maze.RemoteControl

 <RobotConfigFile> <EnvHostname>

In the above command, the RobotConfigFile is the configuration file containing the

information about the robots that will be controlled by the RemoteControl. The

EnvHostname is the hostname of the system in which the Environment is running.

A.2 Configuration File Formats

Figure 12. RobotConfigFile Format

Figure 12 shows the general format of a RobotConfigFile given as input to the

RemoteControl. The information that should be specified in the file are the Hostname/IP

Address of the RemoteControlRobot system, the Port at which the RemoteControl

connects to it, the Robot – Name and a ‘1’ to indicate this robot is primary else a ‘0’. Only one

RemoteControlRobot specified in the file can have a ‘1’ value in the primary tag.

<?xml version="1.0"?>
<RobotInfo>
 <robot>
 <hostname><IP Address></hostname>
 <port><RCPort></port>
 <name><Robot Name></name>
 <primary><1/0></primary>
 </robot>
 …
</RobotInfo>

 30

Figure 13. EnvironmentConfigFile Example

Figure 13 shows an example for the EnvironmentConfigFile. This particular example contains the

information about a robot named Gold1, facing an initial angle of 0.0radians at location (10,-90,5)

with a radius of 3units, a height of 10 units, temperature of 0 degrees and is not stationary. It has

a laser range finder with ID = 3, RANGE = 20, the position relative to the robot is (1.5, 0, 3). The

<?xml version="1.0"?>
<world>
 <surface>
 <type>smooth</type>
 <size>
 <xmin>-500</xmin>
 <xmax>500</xmax>
 <ymin>-500</ymin>
 <ymax>500</ymax>
 </size>

<object>
 <shape>
 <robot>
 <cylinder>
 <direction>0.0</direction>
 <name>Gold1</name>
 <x>30.0</x>
 <y>0.0</y>
 <z>0.0</z>
 <radius>10.0</radius>
 <height>1.0</height>
 <color>1.0 1.0 1.0</color>
 <hot>0</hot>
 <stationary>0</stationary>
 </cylinder>
 <sensor>
 <id>1</id>
 <type>heat</type>
 <range>15</range>
 </sensor>
 <sensor>
 <id>2</id>
 <type>sonar</type>
 <mode>2</mode>
 <position>
 <x-relative>1.5</x-relative>
 <y-relative>0.0</y-relative>
 <z-relative>3.0</z-relative>
 <range>15</range>
 </position>
 </sensor>
 <sensor>
 <id>3</id>
 <type>laser</type>
 <position>
 <x-relative>1.5</x-relative>
 <y-relative>0.0</y-relative>
 <z-relative>3.0</z-relative>
 <dir-relative>0.0</dir-relative>
 <range>20</range>
 </position>
 </sensor>
 </robot>
 </shape>
 </object>
 </surface>
</world>

 31

parameters for the stationary objects are also specified in a similar manner, but sensor section will

not be present and the tag <robot> will be replaced by <primative> and a value of 1 for the

<stationary> tag.

A.3 Controlling Buttons on Joystick

The Joystick buttons that are used for controlling the robot motions and their corresponding

actions are:

BUTTON 2 - Send CheckWin message to Environment

BUTTON 3 - Accelerate the robot

BUTTON 4 - Decelerate the robot

Joystick Handle moved left - Turn the robot left

Joystick Handle moved right - Turn the robot right

 32

Appendix B Programmers Manual

This appendix discusses the information required for modifying the modules developed for this

report. It addresses the programmer’s point of view of the system developed.

B.1 Sensor Module

The Sensor classes that have been implemented are a part of the

edu.ksu.cis.cooprobot.simulator.environment package. The main logic of the sensor

is implemented in the generateSensorResponse() method of each sensor class. The

parameters of the sensors are loaded in the EnvironmentFileLoader class. If any new sensors

are added to the system or the current ones are modified, these issues have to be taken into

consideration.

B.2 RemoteControl Module

The RemoteControl, RemoteControlRobot, and RemoteControlMessage classes make up

the module. They are implemented as a part of the

edu.ksu.cis.cooprobot.simulator.applications.maze package. Any additional

commands that are to be used to control the robot can be implemented by modifying the protocol

existing between the RemoteControl and the RemoteControlRobot. If any new application

are developed, which require the robot to function in either of Autonomous or RemoteControl

mode, can be implemented by adding autonomous control code to the

autonomousControlCode() method and the remote control code to the

remoteControlCode() method of the RemoteControlRobot class.

